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This article describes quantum interference in a lambda system driven by two identical pulses that are each
sufficiently broadband to drive both dipole-allowed transitions. The first pulse drives the system into a quan-
tum superposition, making the effect of the second pulse depend critically on its optical phase and resulting in
Ramsey-like fringes. This method, using just two pulses of the same carrier frequency, is conceptually simpler
than in previous Raman—Ramsey studies, which use pump and Stokes pulses in each of two spatially separated
regions. The goal here is not efficient population transfer, but to investigate narrow features resulting from
quantum interference. I first explore these effects for low-inversion, which illustrates many key features using
an easy-to-visualize model. I then use Schrédinger’s equation in a semiclassical model to extend the results to
arbitrary inversion. Informative quantum interference features remain when using this simplified scheme.

© 2010 Optical Society of America
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1. INTRODUCTION

Ramsey-fringe techniques [1-3] have a long and impor-
tant history, including applications to time and frequency
standards [4—14] and spectroscopy [15-23]. An important
subset of the literature addresses quantum interference
effects, including Ramsey-like fringes, in the case of three-
level systems [6,7,17,24-36]. Ramsey-type work, in which
a three-level A system is driven from one lower state to
the other via a stimulated Raman transition, is some-
times aptly called “Raman—Ramsey” work. Interference
effects in three-level systems driven by pulse pairs also
have applications in coherent control [37,38] and for se-
lecting a narrow velocity distribution of atoms [39,40].
There are calculations addressing the interaction of a
three-level system with a quantized field (e.g., [26,41,42]).
A subset of this work, e.g., in [32,35,36], involves driving
the system into a dark state; the advantages of such
schemes are discussed therein.

With many variations possible, an archetypical stimu-
lated Raman—-Ramsey setup can be pictured as a beam of
three-level A atoms or molecules sent through two inter-
action regions. In each interaction region, the A system
interacts with a pump and a Stokes electromagnetic field.
In zone one, the A system is driven into a coherent super-
position state. The later interaction, in zone two, depends
sensitively on the phase relation between the driving
fields in zone two and the quantum phase of the A system,
which precessed freely between the zones. The physical
reasons for this phase sensitivity are fundamentally simi-
lar to the case of traditional Ramsey fringes in a two-level
system, as discovered in the Nobel Prize winning work of
Ramsey [1,3].

This article uses a straightforward semiclassical model
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to study a case that is different from the cases studied in
the work cited above: it explores the quantum interfer-
ence structure that results from a simplified technique us-
ing just one pulse, of one carrier frequency, in each inter-
action region instead of using pump and Stokes beams.
The amplitude and duration of the pulses are the same in
each interaction region. The pulses are modeled as per-
fectly coherent pulses with a single carrier frequency and
square envelopes. They are not few-cycle or “ultrashort”
pulses, but are short enough to have sufficient bandwidth
to drive both dipole-allowed transitions. Although the cal-
culations below scale, a good exemplar case is the “optical
Ramsey” case, with optical dipole-allowed transitions and
with hyperfine splitting between the two lower states.
The results below (i) show that a Ramsey-like fringe
structure is still present and (ii) explore how the fringe
structure changes as the relevant parameters change.

2. MODEL

Figure 1 shows the system of interest: a A system with
energy levels ¢,=%w; (i=1,2,3), where the lowest level is
chosen to have ¢;=0. In frequency units, the separation
between the lower levels is

55(1)3—(1)1:(1)3. (1)

The A system is driven by an optical beam having carrier
frequency w. The overall detuning A, as shown in Fig. 1, is

A=wy-w, (2)

where o is the average resonant frequency;
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Fig. 1. “Resonant” frequency o, is defined as the energy differ-
ence (in frequency units) measured from the upper level to mid-
way between the lower levels. The detuning is A= w,- . The fig-
ure is drawn with A>0.

g =0

3)

the last equality follows because w; is taken to be zero
here. The single-photon detuning of the | 1)-|2) transition
is

1
AIE(UQ—(.U=A+§. (4)

The last equality in Eq. (4) follows immediately from
Fig. 1. Aj is defined analogously to Ay; it is the detuning of
the |2)-|3) transition from single-photon resonance:

1)
A3Ew2—w3—w=A—§. (5)

Traditionally, the stimulated Raman—Ramsey effect in-
volves a pump beam, generally nearly resonant with the
dipole-allowed |1)-|2) transition, and a Stokes beam,
generally nearly resonant with the dipole-allowed |2)-|3)
transition. In this article, however, I consider only one
carrier frequency w. It is worth noting that with only one
carrier frequency, the system is never on two-photon reso-
nance; it is always detuned by the |3)-|1) splitting 6.
From an energy point of view, one might say that energy
is conserved because the pulse bandwidth allows the en-
ergy absorbed by the |1)-|2) transition to be slightly
more than the energy emitted into the pulse by the |2)-
| 3) transition.

This article addresses the response of a A system
(called an “atom” for convenience) to two optically coher-
ent pulses. The pulses are modeled as having square en-
velopes. For discussing the quantum interference due to
two pulses, we can imagine atoms passing through two in-
teraction zones, or atoms passing through one interaction
zone twice, or two consecutive pulses hitting an atomic
sample. Depending on the experimental details, the
pulses can hit the atom with a zero or with a non-zero
phase shift, as illustrated in Figs. 2(a) and 2(b), respec-
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Fig. 2. (a) The two pulses are different parts of the same sinu-
soid. This could, for example, be obtained by pulsed amplification
of a stable cw laser. (b) The second pulse is a time-delayed copy of
the first pulse. Unless T is an integer multiple of the optical pe-
riod, the second pulse will not be in phase with a mathematical
continuation (shown dotted) of the first pulse. In both (a) and (b),
7is the duration of each pulse, and 7' is the time from the begin-
ning of the first pulse to the beginning of the second pulse.

>
>

tively. Case (a) might, for example, be obtained by pulsed
amplification of a coherent cw laser. Case (b), with a
stable but non-zero phase shift, could be obtained by split-
ting a pulse and sending one copy through an optical de-
lay line. For case (b) a very small change in T (say by a
fraction of an optical cycle) causes a change in the optical
phase of the second pulse [16]. Therefore, case (b) re-
quires controlling 7" with interferometric precision, as
was done, for example, by Scherer et al. [43]. With a
stable phase relation, quantum interference can result in
either case, and the distinction between cases (a) and (b)
has often been discussed, e.g., in [16,35,44—-46]. For con-
venience and tractability, this article takes the phase
shift as zero, using

E(t) =f(t)cos(wt), (6)

where

E)y Ost<rtand T<t<T+r
fit) = . (7

0 otherwise

E is real here, because the absolute phase of the driving
field is not critical. The overall phase represented by a
complex E, would be significant if the envelope were only
a few optical cycles or less in duration [46]. In this article,
however, the critical phase of interest is the phase rela-
tion between the second pulse and the oscillating dipole
moments. That phase is most directly controlled by 7" and
the detunings, not by any overall phase contained in E.

3. EQUATIONS

This section gives the equations of motion for the prob-
ability amplitudes in the Schrodinger picture. The solu-
tions to these equations will be plotted in Sections 4 and 5
to explore the behavior of the system under various con-
ditions. The basis states are the energy eigenstates of the
bare atom: |j), (j=1,2,3). So we have

Hylj) = &li), 8)
where H, is the Hamiltonian of the unperturbed atom

and ¢ is the energy of state |j). An atomic superposition
state can be written
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|W) = C()e ™ 11) + Cy(t)e™“2|2) + Cy(t)e™11[3).  (9)

This phase choice results in constant coefficients in the
coupled differential equations (below) for the C’s when the
laser is on.

The time development of the atomic state is given by
Schrodinger’s equation,

d i, .
a|‘1’>=— f—i[Ho+V(t)]|‘I’>, (10)

where V(t) is the interaction Hamiltonian. Approximating

V(t) using the customary dipole approximation [47,48]
gives

Vi = - q.(il&])f(t)cos(wt) = 7 Q;(t)cos(wt). (11)

Here g% is the atomic dipole moment expectation value
operator projected onto the axis of the optical field polar-
ization. () = —q,(i[Z]j)f(t)/% is the usual Rabi frequency,
representing the interaction energy in frequency units.
The only non-zero matrix elements V;; are for the dipole
allowed transitions: V15=V,; and Vy3=V,,. This allows for
a slight simplification in notation as shown in Fig. 1:
Q15— Q4 and Q93— Q3. For convenience, I take the (); as
real. (See, e.g., [49], pp. 780, 781.)

Using the wave function, Eq. (9), in the Schridinger
Eq. (10) gives the differential equation for the time evolu-
tion of the C’s:

(Cy = iA1Cy)e™™1[1) + (Cy — iwyCo)e™2|2)

+(C5—iA,C3)e™™[3)
i . )
=- %[Vcle_l'ﬁlt|1> + (62 + V)CQQ_Lw2t|2>

+ (€3 + V)Cye'211[3)]. (12)

Using the usual techniques [47-50], including the rotat-
ing wave approximation and the dipole approximation,
the time evolution of the C’s can be extracted from Eq.
(12) and is

. i

Ci= 5(2A1C'1 -0;,Cy); (13)
. i

Co=- 5(9101 +Q3C5); (14)
. i

Cs = - 5(9302 - Agcg) (15)

The simplicity of these equations is the result of the ap-
proximations mentioned just above and also because V7
=V9o=V33=V13=0.
Writing Egs. (13)—(15) together in matrix form yields
d i

—C=--MC, (16)
d 2

where C=[C;,Cy C3]", and
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—2A; Q1) 0O
M=|00 -iy Q0 | 17)
0 Qi) -24,

The iy term has been appended to allow for relaxation of
the upper state out of the system.

4. SHORT, WEAK PULSE LIMIT

A. Solution

The case of short, weak pulses (r<1/A; and low inversion)
allows for conceptual and mathematical simplification,
which facilitates checking some fundamentals. The re-
sults in this section are consistent with intuition carried
over from traditional Raman—Ramsey studies (using
pump and Stokes beams), and also somewhat resemble
the simpler case of Ramsey fringes in a two-level system.
Good agreement between Sections 4 and 5 also shows that
the intuition developed in Section 4 can facilitate under-
standing of the more formal and general results in Sec-
tion 5.

Consider (throughout this article) an atom starting in
the lowest state | 1). An optical pulse then drives the atom
into a superposition state. In the “weak pulse limit” (this
section), the first pulse will leave most of the population
in state | 1). Some of the population will be driven to state
|2), and a small fraction to state |3). But what about the
second pulse? A reasonable guess is that the second pulse
will drive more population along this two-step path (that
is, will cause constructive interference) if the second pulse
is in phase with the already oscillating dipoles. By the
definition of detunings, the driving field o drifts out of
phase with the freely oscillating |1)-|2) and |2)-|3) di-
poles at a rate given by the detunings A; and Aj. If the
field drifts out of phase by a whole number of cycles, then
it is back in phase. That is, the second pulse will arrive in
phase with each oscillating dipole transition if

AT =2nm (18)
and
AT =2mr, (19)

where n and m are integers. (These pulse delay conditions
have a similar significance [51] in frequency comb calcu-
lations.) If the pulse is to be in phase with both oscilla-
tions, then the oscillations must be in phase with each
other. That is, the |1)-|2) oscillation and the |2)-|3) os-
cillation should have drifted out of phase by 2p 7 where p
is an integer:

(wg— 0)T = (wg — w3)T = w3T = 6T =2p. (20)

Put differently, Eq. (20) can also be obtained by simply
subtracting Eq. (19) from Eq. (18).

Equations (18)—(20) can be supported further by solv-
ing Eq. (16). For simplicity in the examples below, con-
sider the Rabi frequencies to be equal:
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0 o Q, pulse on 91
t)= t)= .

18) = Qs(0) 0, pulse off @1

For a weak pulse, most of the population will remain in
state |1). A small fraction of the population will be driven

to state |2) and a still smaller fraction to state |3). That

is,

These approximations simplify the differential equations
for the C’s, Egs. (13)-(15). Neglecting Cy compared to Cy,
Eq. (13) for C; integrates to

C=et, (23)

Moving on to Cy: neglecting decay (y=0), neglecting C;
compared to Cq, and using Eq. (23), Eq. (14) becomes

10

\
QZ
8

2

C3 = - T2€iA3t,
8

Q2

\

Egs. (26) and (27) come from integrating Eqs. (24) and
(25) three times: for the first pulse, for the dark time be-
tween pulses, and for the second pulse. The integration
constants make the C’s continuous at the boundaries. I
also used the “short-pulse” approximation

7<1/A; (in this section), (28)

by using e’%i”~1. In words: the assumption in this section
(unlike Section 5) is that the pulse bandwidth is much
greater than the detunings. This is the physical reason
why some expressions above are insensitive to the detun-
ings; for example, there is no detuning in the expressions
for C, or Cj at the end of the first pulse. Detuning insen-
sitivity when using a single broadband pulse is a stan-
dard textbook result; e.g., the top line of Eq. (26) matches
Eq. (2.8.14) of [48].
The final value of Cj3 is given by evaluating Eq. (27) at
t=T+ 7, yielding
QZ
Ch~- FRach et gihal), (29)

The final population in state |3) is given by

_— 2
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i
. - —Qei1?, pulse on
Cy~1 2 . (24)

0, pulse off

Similarly, Eq. (15) for C5 simplifies to

i
- 5002’ pulse on

iA3C5, pulse off
The “pulse-off” part is taken exactly from Eq. (15), while
the “pulse-on” part has been simplified by dropping the C;
term because it is assumed small compared with the Cy
term.

The approximate solutions to Egs. (24) and (25) are

r<t<T . (26)

- E[T+ t-TeMT), T<t<T+r

r<t<T . 27

- §[2T(t -+t -T)%e™T 4 2ebsT] T<t<T+r7

4
P3 - |C};|2 ~ & 4(2 + eiA1T+ eiA3T)(2 +e—iA1T+e—iA3T)

Q4T4

32

(3+2cos A{T +2 cos A3T + cos 6T). (30)

Equation (30) agrees with the intuitive results in Egs.
(18)—(20) above: the population will be largest when the
three cosines in Eq. (30) are near 1.

Using Eqgs. (4) and (5) allows rewriting Eq. (30) in
terms of the overall detuning A as

Q4 7_4

ST
Py = 3 +cos T + 4 cos AT cos — |. (31)
32 2

Figure 3 shows P3 versus A for three different values of T
(Reassuringly, a plot for the same parameters made using
the more formal results of Section 5 is indistinguishable
from Fig. 3.) Because the variable A appears just once in
Eq. (31), the curves for various 7' are simply scaled and
shifted cosines. For both the heavy solid curve and the
dashed curve in Fig. 3, T is chosen so that cos(57/2)=1.
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Fig. 3. Final population in state |3) as a function of detuning A.
All curves have =10 and 7=0.05 in units chosen so that §=1.
The heavy solid curve has T'=41; the dashed curve has T'=12;
the light solid curve has T'=5.37 (to illustrate a non-integer mul-
tiple of ). As is typical with Ramsey fringes, the fringe width is
of order 1/7T. In contrast, a single pulse of duration 7=0.05 would
result in a peak much broader than the entire figure.

Therefore, the term in parentheses varies from zero to 8.
The FWHM of each fringe is #/T. The dashed curve has T
three times as long as the heavy solid curve, so the fringes
are one-third as wide. All of the fringes in Fig. 3 are much
narrower than the bandwidth of a single pulse, which is of
order 1/7. (1/7 equals 20 in the units of Fig. 3.) Having
fringe width governed by 1/T rather than 1/7is a hall-
mark of traditional Ramsey fringes; Fig. 3 shows that this
crucial property carries over to the nontraditional case
considered in this article.

The light solid curve in Fig. 3 illustrates how the prod-
uct 6T can affect the interference amplitude. In Eq. (31),
the term cos(87/2) multiplies the oscillating term and
therefore sets the scale of the oscillation. Because that co-
sine can range between —1 and +1, the oscillation will
scale and can change sign as T changes. The light solid
curve shows a case with cos(87'/2) negative, so the oscil-
lations are inverted. Also, because cos(8T/2) is not all the
way to —1, that curve has smaller oscillations.

B. Frequency Domain Discussion

Equations (18)—(20) above, along with the basic structure
of Fig. 3, are consistent with intuition about “in-phase
timing” for constructive interference. For low inversion,
the resonance structure can also be understood from the
frequency domain point of view, which is widely used; see,
e.g., [1,2,52,53].

Effectively picturing the frequency domain requires
keeping in mind that the pulses are broadband. In the
time domain, Fig. 2(a) might have tempted one to say
simply that the second pulse is “in phase” with the first.
However, each pulse has a frequency spectrum, and vari-
ous frequency components will have various phase rela-
tions. The main issue is not necessarily whether the car-
rier frequency is in phase from pulse to pulse, but
whether the frequency components matching the allowed
transitions interfere constructively. This issue of pulse-
to-pulse interference also arises for a similar reason
in frequency-comb spectroscopy. (See, e.g.,
[9,22,23,51,54-56].) Frequency-comb work is in a differ-
ent parameter regime than the one addressed here; it ad-
dresses the more extreme case of ultrashort coherent
pulses. Because of their extreme bandwidth, ultrashort
pulses can interfere constructively at many frequencies,
hence giving rise to the “frequency comb.” Although the
parameter regime is different in that work and this, the
phase delay concept is of similar importance. For ex-
ample, [51] (p. 7) describes the pulse-to-pulse interference
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requirement in their case “by noting that for the laser
modes to match both atomic transitions, then the differ-
ence between the atomic frequencies must be equal to
some multiple of the mode spacing 2#/T.” That point of
view agrees with Eq. (20) above. For this article, I will
continue the discussion in the time domain, and now turn
to the more general case, including arbitrary inversion.

5. GENERAL CASE, INCLUDING
ARBITRARY INVERSION

A. General Solution
The approximate solution for the population in state |3),
Eq. (31), is useful because it reveals the physics effec-
tively; it explicitly displays how each parameter enters.
Even when discussing the exact solution below, I will
sometimes refer back to Eq. (31), because it can make the
physics transparent.

To obtain a more general solution that holds for arbi-
trary inversion, we can directly integrate Eq. (16), giving
the formal solution

ct)=e " C(0). (32)

Equation (16) could also be addressed by finding the ei-
genvalues and eigenvectors of M, but that algebra yielded
no further physical insight, so I will leave the general so-
lution written compactly as Eq. (32). For plotting the vari-
ous cases below, I used a power series expansion of the ex-
ponential in Eq. (32), while keeping enough terms to
insure that each plot represents the actual solution. The
number of terms needed depends on the parameters.

Finding the final population in state |3) requires step-
ping through the “on-off-on” pulse sequence, much like in
the previous section. C(7) is given by evaluating Eq. (32)
at t=7, and with the atom starting in the ground state
CT(0)=(1,0,0). The “pulse-off” part of the evolution is
simple: putting both Rabi frequencies equal to 0 in M
shows that the atom simply precesses and decays. There-
fore at the end of the “off-time” we have

Co(T) =e1T-7C, (7),

CoT) = 2770y (),
Co(T) = e T-9Cy (7). (33)

These coefficients become the initial conditions for the
second pulse. The effect of the second pulse is calculated
in the same way as for the first pulse: by using Eq. (32),
but with the initial conditions appropriate for the second
pulse,

o= e, (34)

The final upper-state population is
P3 = |C£|2. (35)

B. Agreement in the Low Inversion Case
In any situation to which the assumptions of Section 4 ap-
ply, Eq. (31) and Eq. (35) agree. For example, for the three



1548 J. Opt. Soc. Am. B/Vol. 27, No. 8/ August 2010

curves plotted in Fig. 3, Egs. (31) and (35) give indistin-
guishable results. The reason for presenting both equa-
tions is this: Eq. (35) applies more generally, because nei-
ther the low inversion approximation [Egs. (22)] nor the
short-pulse approximation [Eq. (28)] was used. However,
the more restricted result, Eq. (31), is useful because it
explicitly displays the parameter dependence, allowing
for a more intuitive understanding of the physics.

C. Velocity Averaging

For the case of an atomic beam traveling through two in-
teraction regions, different atoms have different speeds,
and hence have different travel times; that is, different
atoms have different 7'. This is a Doppler broadening ef-
fect that is considered disadvantageous in some circum-
stances, but in Ramsey experiments it offers the impor-
tant advantage of identifying the main peak at A=0. This
advantage is important enough that averaging over T is
often artificially introduced into two-pulse experiments
with trapped atoms by using a range of optical pulse de-
lays and then averaging the results (e.g., in [2,18,57,58]).
The point of averaging over T in a two-pulse experiment
using two-level atoms is this: the constructive interfer-
ence peak with zero detuning remains, because a reso-
nant drive stays resonant regardless of the dark time.
However, constructive interference peaks due to a relative
phase shift between pulses of 27, 47, 6, etc., are washed
out, because having those phase delays is T-dependent.
Because the side peaks wash out, the central peak can be
unambiguously identified. The results in this subsection
show that for three-level atoms, averaging over T depends
on the averaging interval in a more complex way.

A great deal can (and has) been said about the details of
velocity averaging. The details depend on many factors,
including whether the variation in 7 is due to a spread of
atomic velocities in a beam or due to controlled variation
of two pulses interacting with a sample of trapped atoms.
This article does not address a myriad of averaging
schemes; rather, it addresses two core issues: (1) Do the
fringes remain after velocity averaging? (They do.) (2)
How does changing the range of delay times T included in
the averaging affect the signal?

The T averaged results shown as bold curves in Fig. 4
are obtained by a simple boxcar average,

1 Timax
Pm}g(A’Tm xmiin) = —f P3(A’T’)dT,-
’ : Tmax - Tmin

Tmin

(36)

The bold curves in Figs. 4(a)-4(c) show a striking varia-
tion, which is due solely to their having different averag-
ing limits. The progression in Fig. 4 can be understood
with the help of Eq. (31) (even thought the more precise
results of Section 5 were used to make these graphs). The
not-velocity-averaged (dashed) curves in Fig. 4 are funda-
mentally the result of the cos AT term in Eq. (31). As men-
tioned earlier in connection with two-level systems, this
term is positive when A=0 regardless of 7. That is why
the A=0 peak does not wash out in the averaging for a
two-level atom. However, some additional complexity of a
three-level atom is revealed by the cos(5T/2) term that
multiplies cos AT in Eq. (31). The cos(5T/2) term changes
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Fig. 4. The only change among the three graphs is the velocity
averaging interval. All three graphs have (=5 and 7=0.2 in
units chosen so that §=1. For comparison, the dashed curves
show the non-velocity-averaged population in state |3) as a func-
tion of detuning for a pulse delay of T'=4m. The solid curves show
the result when averaged using Eq. (36). (a) Averages over T
=4m+1. (b) Averages over T'=47+4. (c) Averages from T=4m
—10 to 47+40. The purpose of the asymmetric averaging interval
in (c) is simply to allow a very large range of T' without going be-
low 7, which would be unphysical. The striking qualitative
change is discussed in the text.

sign if T is varied greatly, eventually causing the A=0
peak to wash out. Figure 4 shows an example of such a
progression. In Fig. 4(a), the range of velocity integration
is T=47+1, in units with §=1. The purpose of this choice
is to keep cos(87/2) always positive. This makes the last
term in Eq. (31), evaluated at A=0, 4 X1 X (a positive).
Averaging over just positive numbers retains the peak at
A=0. In Fig. 4(b), the solid curve is averaged over T
=47+4, which includes some negative values of
cos(8T'/2), thereby reducing the height of the main peak.
This broader range of T is sufficiently large that the non-
central peaks are averaged over enough positive and
negative values to wash out. This is a hallmark of the ef-
fect of velocity averaging in Ramsey fringes.

Figure 4(c) uses an even broader range of 7" in averag-
ing, and reveals an effect with no exact equivalent in
Ramsey fringes for two-level systems. Figure 4(c) can be
thought of algebraically or physically. In algebraic terms,
the product of cosines in Eq. (31) will include both positive
and negative numbers, and will therefore average to near
zero if an extremely wide range of T is sampled. The ex-
ception to that is when A==+6/2; for that case, the last
term in Eq. (31) is a cosine squared term, and will there-
fore never average to zero. In physical terms, A=+65/2 is
where the carrier is resonant with one of the dipole-
allowed transitions, as shown by Eqgs. (4) and (5). Hence,
the peaks at A=+1/2 (in units where §=1) in Fig. 4(c)
show the allowed transition frequencies. This is an inter-
esting shift—from identifying the central fringe at A=0,
to identifying the two dipole-allowed resonances.

Figure 5(a) further illustrates how Eq. (31) can afford
some simple understanding of population inversion. First,
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Fig. 5. (a) Population in state |3) versus detuning A and pulse
delay time 7. Units are chosen so that §=1. The other param-
eters are 7=0.2, O=7, and y=0. The maximum population is
0.49 and is indicated by white; black indicates no population in
|3). (b) White indicates places where one would have expected
high inversion from the extremely naive guess based on Egs. (18)
and (19). The agreement is quite good, considering that the naive
guess should become less and less reliable as inversion increases.

-3 -2 -1 0 1 2 3

Fig. 6. The dashed curve is identical to those in Fig. 4, again
having T'=47, =5, and 7=0.2 in units chosen so that §=1. The
heavy solid curve has 7=4, giving the pulse a narrower band-
width and hence identifying the central peak. The pulse area is
the same in both cases, with 7 =1. The lighter solid curve con-
firms that decay (y =0.2) simply lowers the overall signal. There
is no velocity averaging in this figure.

since the important cos(AT) term contains A and T only
as a product, the graph shows basically hyperbolic con-
tours, because the product is constant along hyperbolas.
Second, Eq. (31) clearly reveals why the contours flip from
black to white along horizontal bands at T'=7 and 3.
This is because the cos(AT) term causing the hyperbolas
is multiplied by cos(87/2), which changes sign at T=m
and 3.

Comparing Figs. 5(a) and 5(b) shows that using Egs.
(18) and (19) to get a good sense of inversion is justified
even for nontrivial inversion. Figure 5(a) shows the actual
inversion as a function of A and 7', while Fig. 5(b) shows
where one might have casually guessed inversion would
be large. The guess in Fig. 5(b) is simply a plot of
cos(A1T)+cos(A3T), chosen because that expression gives
a crude map of where Eqgs. (18) and (19) are true. More
precisely, cos(A;T)+cos(A3T) is contained in the middle
term in Eq. (30), which reveals the same physics.

D. Longer Pulses

There is another way (besides averaging over T) to iden-
tify the central interference peak. Figure 6 illustrates
this. The dashed curve in Fig. 6 is identical to the dashed
curves in Fig. 4. The heavy solid curve in Fig. 6 shows the
effect of increasing 7. There is no velocity averaging what-
soever in Fig. 6; rather, increasing 7 simply gives the
pulses a narrower bandwidth and identifies the central
peak. The lighter solid curve in Fig. 6 shows that decay
(y#0) has the expected effect of lowering the signal.
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6. CONCLUSIONS

A pulse of sufficient bandwidth can drive both dipole-
allowed transitions in a A system. Two optically-coherent
pulses can cause quantum interference effects: the first
pulse leaves the atom in a superposition state, and the ef-
fect of the second pulse depends critically on its phase re-
lation with the already-excited system. This article dem-
onstrates that such stimulated Raman—Ramsey quantum
interference effects can be studied in a simplified
manner—using a total of just two pulses of one carrier
frequency, rather than using the traditional pump and
Stokes fields in each interaction. The physics underlying
the resulting quantum interference effects has been ex-
plored and illustrated in detail here using a straightfor-
ward semiclassical model.
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